

Recursive Tensor Potentials and the τ -Field Bridge: Revised Theoretical Basis for Chamber XX and the Phase F Transition

UNNS Research Collective
UNNS Substrate Project, 2023–2025
(Dated: November 2025)

This paper establishes the mathematical and conceptual groundwork for the forthcoming Chamber XX of the UNNS Substrate experimental sequence, marking the transition from Phase E (validated tensor recursion) to Phase F (recursive field unification). Building directly upon Chamber XIX, we restore the operator-differential definition of the recursion tensor, $R_{ij} = O_i(\tau_i) - O_j(\tau_j)$, and introduce an optional cross-field extension, $R'_{ij} = O_i(\tau_j) - O_j(\tau_i)$, to formalize inter-field coupling. The divergence and curl of these tensors define the scalar and pseudo-vector observables Φ and Ψ , which will form the computational core of Chamber XX. Rather than claiming equivalence with Maxwell's equations, we formulate a set of Maxwell-analog relations that identify measurable symmetries and conservation laws within recursive geometry. This document serves as the reference specification for developers implementing the Phase F tensor bridge and as a predictive theoretical framework for future validation chambers.

CONTENTS

I. Introduction	1
II. Formal Framework	2
A. Operator-Differential Tensor Definition	2
B. Antisymmetry and Energy Interpretation	2
III. Divergence and Curl Operators	2
A. Discrete Divergence	2
B. Discrete Curl	2
IV. Recursive Coupling and Gauge Matrix	3
V. Maxwell-Analog Field Relations	3
VI. Computational Implications for Chamber XX	3
VII. Conclusions and Phase F Outlook	3
A. Appendix A: Notation Summary	4
B. Appendix B: Developer Alignment	4
References	4

I. INTRODUCTION

Phase E completed the stabilization of recursive tensor dynamics within the UNNS Substrate, validating antisymmetry, normalization, and equilibrium convergence for multi-field recursion systems. Chamber XIX provided a numerical environment for R_{ij} tensors derived from field differentials $O_i(\tau_i)$.

Phase F extends this foundation by introducing the concept of a *τ -Field Bridge*: a coupling framework connecting distinct recursion fields through their differential tensors. Chamber XX is the planned experimental implementation of this concept. The present paper does not report results; instead it specifies the mathematical structure and computational expectations required for the Chamber XX design.

II. FORMAL FRAMEWORK

A. Operator-Differential Tensor Definition

We adopt the validated definition from Phase E:

$$R_{ij} = O_i(\tau_i) - O_j(\tau_j), \quad (1)$$

where O_i and O_j are operator mappings acting on local recursion fields τ_i and τ_j . Each R_{ij} represents the antisymmetric tensor of recursion differentials.

For cross-field generalization, Chamber XX may optionally implement

$$R'_{ij} = O_i(\tau_j) - O_j(\tau_i), \quad (2)$$

introducing inter-field correlations without altering the antisymmetric core.

B. Antisymmetry and Energy Interpretation

Antisymmetry is preserved:

$$R_{ij} = -R_{ji},$$

ensuring that pairwise field interactions conserve total recursion energy. The scalar recursion energy density can be written

$$\mathcal{E} = \frac{1}{2} \sum_{i < j} \|R_{ij}\|^2, \quad (3)$$

where the norm is taken over the two-dimensional grid of evaluation.

III. DIVERGENCE AND CURL OPERATORS

A. Discrete Divergence

For a two-dimensional grid (x, y) with spacing $\Delta x, \Delta y$, the divergence of R_{ij} is defined as

$$\begin{aligned} \Phi(x, y) &= \nabla \cdot R_{ij}(x, y) \\ &= \frac{R_{ij}(x + \Delta x, y) - R_{ij}(x - \Delta x, y)}{2\Delta x} + \frac{R_{ij}(x, y + \Delta y) - R_{ij}(x, y - \Delta y)}{2\Delta y}. \end{aligned} \quad (4)$$

This produces a scalar potential field $\Phi(x, y)$ measuring net inflow or outflow of recursion.

B. Discrete Curl

The pseudo-vector (or scalar in 2D) curl of R_{ij} is

$$\begin{aligned} \Psi(x, y) &= (\nabla \times R_{ij})(x, y) \\ &= \frac{R_{ij}(x, y + \Delta y) - R_{ij}(x, y - \Delta y)}{2\Delta y} - \frac{R_{ij}(x + \Delta x, y) - R_{ij}(x - \Delta x, y)}{2\Delta x}. \end{aligned} \quad (5)$$

Ψ represents rotational flow of recursion, an indicator of local phase circulation.

IV. RECURSIVE COUPLING AND GAUGE MATRIX

The τ -Field Bridge introduces feedback among recursion fields via a coupling matrix α_{kl} . Let τ_k denote the k -th recursion field. The update equation is defined as

$$\tau'_k = \tau_k + \sum_l \alpha_{kl} \rho(R_l), \quad (6)$$

where $\rho(R_l)$ is a scalar reduction (Frobenius norm) of the tensor R_l :

$$\rho(R_l) = \sqrt{\frac{1}{N} \sum_{x,y} R_l^2(x,y)}. \quad (7)$$

The stability condition for feedback is expressed as spectral-radius constraint

$$\rho(\alpha) < 1.$$

This ensures convergence of the coupled recursion system.

V. MAXWELL-ANALOG FIELD RELATIONS

Rather than asserting direct physical equivalence, we formulate a mathematical analogy. Define the fields

$$E = \Phi, \quad B = \Psi, \quad (8)$$

then the following relations are proposed for observation:

$$\nabla \cdot E = 0 \quad (\text{recursion conservation}), \quad (9)$$

$$\nabla \times B = \partial E / \partial \tau \quad (\text{recursive induction}), \quad (10)$$

$$E \cdot B \approx 0 \quad (\text{orthogonality condition}). \quad (11)$$

No explicit source terms (ρ_τ, J_τ) are introduced at this stage. These equations provide testable symmetry relationships for Chamber XX without overextending into physical electromagnetism.

VI. COMPUTATIONAL IMPLICATIONS FOR CHAMBER XX

The Chamber XX simulation engine will compute:

1. R_{ij} tensors for each field pair (i, j) ,
2. divergence Φ and curl Ψ fields using finite-difference stencils,
3. energy density \mathcal{E} and gradient $\nabla \mathcal{E}$,
4. stability and antisymmetry metrics.

Target performance is aligned with optimized Chamber XIX architecture: ≥ 60 fps at 512^2 grid, CPU $\leq 70\%$.

VII. CONCLUSIONS AND PHASE F OUTLOOK

This pre-Chamber document defines the theoretical basis for the τ -Field Bridge and its recursive tensor potentials. The framework remains purely mathematical until verified experimentally. Future tasks include:

- implementing validated divergence and curl operators,
- extending coupling matrices to dynamic operator feedback,
- benchmarking spectral invariants $(\gamma^*, \mu^*, \alpha)$,
- and correlating recursive symmetry with emergent field behavior.

Chamber XX will therefore serve as the first numerical probe of the UNNS–Maxwell correspondence, guiding the Phase F transition toward a unified recursive field theory.

Appendix A: Appendix A: Notation Summary

- τ_i — recursion field i
- O_i — operator acting on τ_i
- R_{ij} — recursion tensor $O_i(\tau_i) - O_j(\tau_j)$
- Φ — divergence (scalar potential)
- Ψ — curl (rotational potential)
- α_{kl} — coupling matrix
- $\rho(\alpha)$ — spectral radius
- \mathcal{E} — recursion energy density
- (E, B) — Maxwell-analog fields

Appendix B: Appendix B: Developer Alignment

1. Baseline: use Chamber XIX v19.1.2-CORRECTED architecture.
2. Core functions: `computeDivergence()`, `computeCurl()`, `validateAntisymmetry()`.
3. JSON schema: `{phase:"F", grid, fields, timestamp, seed, Rij_energy}`.
4. Validation metrics: antisymmetry < 0.005 , orthogonality $|\langle E \cdot B \rangle| < 10^{-3}$, equilibrium $\nabla \mathcal{E} < 10^{-6}$.

[1] UNNS Research Collective, *Chamber XIX — Recursive Tensor Geometry and Phase E Validation*, UNNS Substrate Series (2025).
[2] UNNS Research Collective, *UNNS Maxwell Analog Framework*, UNNS Field Extensions Series (2024).